P15

IONIC CONDUCTIVITY PROPERTIES OF ZrF₄-BaF₂-LaF₃-AF (A = Li, Na) GLASSES

J. M. Réau, J. Senegas

Laboratoire de Chimie du Solide du CNRS, Université de Bordeaux I, 33405 Talence Cédex (France)

M. Rojo

Instituto de Ciencias de Materiales, C.S.I.C. Madrid (Spain)

M. Poulain

Laboratoire de Chimie minérale D. L.A. 254, Rennes (France)

and H. Kahnt

Department of Chemistry, Friedrich-Schiller-University, Jena (G.D.R.)

A comparative study of electrical properties of both series of glasses $\text{ZrF}_4(0.62-0.4x)\,\text{BaF}_2(0.30-0.5x)\,\text{LaF}_3(0.08-0.1x)\,\text{AF}(x)$ (A = Li, Na) (0 < x < 0.30) has been carried out as a function of AF content.

A minimum of ionic conductivity bound to a maximum of activation energy has been detected when the atomic Li/F ratio is equal to $\simeq 0.07$. By analogy with the glasses belonging to ${\rm ZrF_4}^-{\rm BaF_2}^-{\rm ThF_4}^-{\rm LiF}$ system, it is proposed that in the Li-low concentration domain (Li/F $\lesssim 0.07$) transport properties result from mixed contributions of mobile Li and F ions and for high Li concentrations (Li/F $\geqslant 0.07$), they depend only on the Li rate.

When A = Na, on the contrary, conductivity decreases regularly and activation energy increases with increasing x. The electrical properties result only from the contribution of mobile \mathbf{F}^- ions. A 23 Na NMR study has shown that Na $^+$ ions do not participate in the conductivity mechanisms.